GIS and Remote Sensing to Support Precision Viticulture for Analysis of Vineyards in the Campanha Wine Region, Brazil

Rosemary Hoff Hoff, Jorge Ricardo Ducati, André Rodrigo Farias

Abstract


Agricultural products depend upon the geographical area of production and their quality depends on environment and crop management. Grapevine cultivars can be adapted to the environment, resulting in differences in fruit quality, which will produce different wines. The knowledge of the territory gives value to agricultural products and the use of free software has advantages to associate spatial data with Geographical Information System (GIS) functions for Digital Image Processing (DIP), spatial analysis, Digital Elevation Models (DEM) and databases. The objective of this study was analyze spatially vineyards of Vitis vinifera in south Brazil, using DEM for zoning landscape and employing RapidEye images at different crop stages, in order to follow the Normalized Difference Vegetation Index (NDVI) and test tools that allow the producer a customized management between vineyards and within each vineyard. The software gvSIG was used to evaluate NDVI for plant vigor in order to infer diseases, water status, and other factors. NDVI, altitude, slope, and exposure average were generated for 64 vineyards. To a Cabernet Sauvignon area, a map was generated, showing the variability of the vineyard by resampling of pixel size image, from five to one-meter spatial resolution and zoning according to critical variables for the vineyard. In conclusion, geotechnology is important for viticulture, as a support to environmental diagnostics and are a strategic application for agricultural management. Analytical tools and sensors can provide fast, easily accessible data to all users, being a technology prone to be of widespread access for the end user.

Keywords


GIS; image processing; spatial analysis; vineyard; Remote Sensing; NDVI; Plant Monitoring

Full Text:

PDF

References


Arnó J., J.A. Martínez-Casasnovas, M. Ribes-Dasi, and J.R. Rosell. 2009. Review. Precision Viticulture. Research topics, challenges and opportunities in site-specific vineyard management. Spanish J. Agric.Res. 7(4):779-790.

Baluja, J., M.P. Diago, P. Balda, R. Zorer, F. Meggio, F. Morales and J. Tardaguila. 2012. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig. Sci. 30:511–522.

Bannari, A., D. Morin, F. Bonn and A.R. Huete. 1995. A review of vegetation indices. Remote Sens. Rev. 13(1-2): 95-120.

Bramley, R. G. V. 2001. Progress in the development of precision viticulture – variation in yield, quality and soil properties in contrasting Australian vineyards. In: Curreie, L. D. and P. Loganathan (Eds). Precision tools for improve land management. Occasional Report No. 14: 1-19. Available at: http://www.cse.csiro.au/client_serv/resources/bramley1.pdf

Cemin, G. and J.R.Ducati. 2008. On the Stability of Spectral Features of Four Vine Varieties in Brazil, Chile and France. In: VIIth International Terroir Congress, 2008, Nyon. Proceedings of the VIIth ITC. Nyon: Agroscope Changins Wädenswil. 1:475-480. Available at: https://www.bdpa.cnptia.embrapa.br/consulta/busca?b=ad&id=874200&biblioteca=vazio&busca=cemin&qFacets=cemin&sort=&paginacao=t&paginaAtual=1

Collado, A.D., E. Chuvieco and A. Camarasa. 2002. Satellite remote sensing analysis to monitor desertification processes in the crop-rangeland boundary of Argentina. J. Arid Environ. 52(1): 121-133.

Comba, L., P. Gay, J. Primicerio and D. Ricauda Aimonino. 2015. Vineyard detection from unmanned aerial systems images. Comput. Electron. Agric. 114: 78-87.

Da Costa, J. P., F. Michelet, C. Germain, O. Lavialle and G. Grenier. 2007. Delineation of vine parcels by segmentation of high resolution remote sensed images. Precis. Agric. 8 (1-2):95-110.

Delenne C., S. Durrieu, G. Rabatel and M. Deshayes. 2010. From pixel to vine parcel: A complete methodology for vineyard delineation and characterization using remote-sensing data. Comput. Electron. Agric.. 70(1):78–83.

Doraiswamy, P.C., J.L. Hatfield, T.J. Jackson, B. Akhmedov, J. Prueger and A. Stern. 2004. Crop condition and yield simulations using Landsat and MODIS. Remote Sens. Environ. 92(4): 548-559.

Ducati, J. R., V. Bettú and R. Hoff. 2009. Remote Sensing Techniques in the Characterization of Viticultural Terroirs in South Brazil: A Case Study on Malvasia. In: III International Symposium Malvasia, 2009, Santa Cruz de Tenerife. Proceedings III International Symposium Malvasia. Santa Cruz de Tenerife: Universidad de La Laguna.1:1-18.

Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA. 2007. Embrapa at Brazilian Biomes (in Portuguese). Available: http://www.embrapa.gov.br/publicacoes/institucionais/laminas-biomas.pdf

Falcade, I. and F. Mandelli. 1999. Vale dos vinhedos – regional geographic characterization. Caxias do Sul: EDUCS, p. 144. Available at: https://www.bdpa.cnptia.embrapa.br/consulta/busca?b=ad&id=538724&biblioteca=vazio&busca=mandelli&qFacets=mandelli&sort=&paginacao=t&paginaAtual=1

Fensterseifer, J. E. 2007. The emerging Brazilian wine industry: Challenges and prospects for the Serra Gaúcha wine cluster. Int. J. Wine Bus. Res.. 19(3): 187-206.

Ferencz, C., P. Bognár, J. Lichtenberger, D. Hamar, G. Tarcsai, G. Timár, G. Molnár, S.Z. Pásztor, P. Steinbach, B. Székely, O.E. Ferencz and I. Ferencz-Árkos. 2004. Crop yield estimation by satellite remote sensing. Int. J. Remote Sens. 25(20): 4113-4149.

Flores, M. X. 2009. Innovation in rural areas and new paradigms of development. In: Martin Piñero. (Org.). Agricultural Institutions in Latin America: Current Status and New Challenges. Roma: FAO, 2009, v. 1, p. 149-169. Available at: http://www.fao.org/3/a-as449s.pdf (In Spanish).

Garrido. L. R.; Hoffmann, A., Silveira, S. V. 2015. Integrated grape production for processing: pest and disease management. Brasília, DF: Embrapa, 2015. Available: http://ainfo.cnptia.embrapa.br/digital/bitstream/item/132389/1/manual-4-manejo-cap2.pdf

Gil, E., J. Arnó, J. Llorens, R. Sanz, J. Llop, J. Rosell-Polo, M. Gallart and A. Escolà. 2014. Advanced Technologies for the Improvement of Spray Application Techniques in Spanish Viticulture: An Overview. Sensors. 14(1): 691.

Giovannini, E. 2014. Viticulture Guide. 1. ed. Porto Alegre: Bookman. Vol. 1. p. 253. (In Portuguese)

GVA - Generalitad Valenciana. 2010. gvSIG – Geographic Information System. Conselleria d'Infraestructuras y Transportes (CIT), Valencia. Available: http://www.gvsig.gva.es/.

Hall A., D.W. Lamb, B. Holzapfel, and J. Louis. 2002. Optical remote sensing applications in viticulture - A review. Australian J. Grape Wine Res. 8(1):36-47.

Hasenack, H. and E. Weber. 2010. (org.). Continuous vectorial cartographic base of Rio Grande do Sul - 1:50.000 scale. Porto Alegre, UFRGS-IB-Centro de Ecologia. 2010. 1 DVD-ROM (Geoprocessing Series, 3). Available at: https://www.ufrgs.br/labgeo/index.php/dados-espaciais/250-base-cartografica-vetorial-continua-do-rio-grande-do-sul-escala-1-50-000

Hoff, R. 2015. Characterization of vineyards by the application of remote sensing techniques and geographic information system at “Metade Sul” region, RS, Brazil – GEOVITISUL. Project concluded in 2015. Embrapa Grape and Wine (coordinate). Project code: 03.12.01.015.00.00. Bento Gonçalves, Brazil (In Portuguese). Available at: https://www.embrapa.br/uva-e-vinho/busca-de-projetos/-/projeto/205190/desenvolvimento-da-indicacao-de-procedencia-campanha-para-vinhos-finos-e-espumantes

Hoff, R. J.R. Ducati, A.R. Farias, M.G. Bombassaro, J.M.R. Villaro, J.G. Moral, R.C.C. Modena and C.A.M. Almeida. 2013. Characterization of vineyards by the application of remote sensing techniques and spectroradiometry at Metade Sul region, RS, Brazil. In: XIV Latin American Congress on Viticulture and Oenology, 2013, Tarija, Bolivia. Proceedings XIV Latin American Congress on Viticulture and Oenology: Fautapo, 2013. v. 1. p. 99-102. (In Portuguese with English abstract). https://www.bdpa.cnptia.embrapa.br/consulta/pdf

Hoff, R., J.R. Ducati and M. Bergmann. 2010. Geologic and geomorphologic features applied for identification of wine terroirs units by digital image processing, spectroradiometric and GIS techniques in Encruzilhada do Sul, RS, Brazil. In: VIII International Terroir Congress, p. 4-44-49. Soave, Italia. Available at: http://terroir2010.entecra.it/atti/pdf/session4.pdf

Hoff, R., J.R. Ducati and M. Bergmann. 2009. Comparison of digital elevation model data - MDE: ASTER and SRTM by digital image processing for identification of wine terroir at Encruzilhada do Sul Map, RS, Brazil. In: XIV Brazilian Symposium on Remote Sensing, 2009, Natal, Brazil. Proceedings XIV Brazilian Symposium on Remote Sensing. S. J. dos Campos: INPE, Vol. 1. p. 1-8. (in Portuguese with English abstract). http://marte.sid.inpe.br/col/dpi.inpe.br/sbsr@80/2008/11.18.02.00.46/doc/215-222.pdf

IBGE – Instituto Brasileiro de Geografia e Estatística. (2003). Geology, geomorphology, soil, vegetation maps, 1:250.000 scale. (In Portuguese) ftp://geoftp.ibge.gov.br/mapas/tematicos/sistematizacao/

Johnson, L.F., D.E. Roczen, S.K. Youkhana, R.R. Nemani and D.F. Bosch. 2003. Mapping vineyard leaf area with multispectral satellite imagery. Comput. Elect. Agric. 38(1):33-44.

Lamb. D.W., M.M. Weedon and R.G.V. Bramley. 2004. Using remote sensing to predict grape phenolics and colour at harvest in a Cabernet Sauvignon vineyard: Timing observations against vine phenology and optimising image resolution. Australian J. Grape Wine Res. 10:46–54.

Matese, A., P. Toscano, S. Di Gennaro, L. Genesio, F. Vaccari, J. Primicerio, C. Belli, A. Zaldei, R. Bianconi and B. Gioli. 2015. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sensing. 7(3): 2971.

Metternicht, G.I., J.A. Zinck. 2003. Remote sensing of soil salinity: potentials and constraints. Remote Sens. Environ. 85(1): 1-20.

Moran, M. S., L. Alonso, J.F. Moreno, M.P.C. Mateo, D.F. de la Cruz, and A. Montoro. 2011. A RADARSAT-2 Quad-Polarized Time Series for Monitoring Crop and Soil Conditions in Barrax, Spain. IEEE Transactions Geoscience Remote Sensing. 1:1-14.

Peel, M. C., B. L. Finlayson and T.A. McMahon. 2007. Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth System Sci. 11: 1633–1644.

Pereira, G. E. 2011. Around tropical wines in the eighth parallel of the Southern Hemisphere, northeast of Brazil. In: Perard, J., Perrot, M. (Org.). Men and wine: Wine, heritage and marker of cultural identity. 1ed.Dijon: Centre Georges Chevrier. 1:29-46. (in French with English abstract). https://www.bdpa.cnptia.embrapa.br/consulta/marc?id=917062

Planetlabs. RapidEye image. Planet Labs Inc. San Francisco 2015. https://www.planet.com/

Protas, J.F.S. and U.A. Camargo. 2010. Brazilian Winemaking - Sectorial Overview in 2010. Ibravin/Embrapa Uva e Vinho/Sebrae, 2011, 110 p, ilustr. Brasília. (In Portuguese). http://www.ibravin.org.br/public/upload/downloads/1384347732.pdf

Protas, J.F.S., U.A. Camargo and L.M.R. Melo. 2002. The Brazilian winemaking: reality and perspectives. In: first “Mineiro” Symposium of Viticulture and Oenology, 16 a 19 abril, Andradas, MG. Viticulture and Oenology - Updating Concepts. Andradas: Epamig, Proceedings: p.17-32. (In Portuguese). http://ainfo.cnptia.embrapa.br/digital/bitstream/item/148640/1/Protas-SMVE-p17-32-2002.pdf

Rafiq, L., T. Blaschke, H.U. Rehman, and S. Zubair. 2014. Satellite data based spectral indices for estimating surface salinity in Pakistan. J. Environ. Agric. Sci. 1:6.

Reynolds, A. G., I.V. Senchuk, C. Van der Rees and C. Savigny. 2007. Use of GPS and GIS for elucidation of the basis for terroir: Spatial variation in an Ontario Riesling vineyard. Am. J. Enology Viticulture. 58:145-162.

Santesteban, L.G., S.F. Di Gennaro, A. Herrero-Langreo, C. Miranda, J.B. Royo and A. Matese. 2017. High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Agric. Water Manage. DOI: 10.1016/j.agwat.2016.08.026.

Silva, P.R. and J.R. Ducati. 2009. Spectral features of vineyards in south Brazil from ASTER imaging. Int. J. Remote Sens. 30(23): 6085-6098.

Silveira, S. V. 2017. Development of the "Campanha" Indication of Origin for fine and sparkling wines - IP Campanha. Project 2013-2017. Embrapa Grape and Wine (Coordinate). Project code: 02.13.00.001.00.00. Bento Gonçalves (In Portuguese). Available at: https://www.embrapa.br/uva-e-vinho/busca-de-projetos/-/projeto/205190/desenvolvimento-da-indicacao-de-procedencia-campanha-para-vinhos-finos-e-espumantes

Thorp K. R. and L.F. Tian. 2004. A review on remote sensing of weeds in agriculture. Precision Agric. 5:477–508.

Tonietto, J. and M.C. Zanus. 2007. Geographical Indications of Fine Wines from Brazil Advances and Projects under Development. Embrapa Grape and Wine, Bento Gonçalves. http://www.cnpuv.embrapa.br/publica/artigos/ig_leis_avancos_projetos.pdf (In Portuguese).

Tonietto, J., C. Guerra, F. Mandelli, G.A. Silva, L.R. Mello, M.C. Zanus, R. Hoff, C.A. Flores, I. Falcade, H. Hasenack, E.J. Weber, A.A. Calza and R.M.B. Fae. 2008. Characteristics of the regional identity for a geographical indication of wines. Bento Gonçalves: Embrapa Uva e Vinho. Technical Bulletin No. 76. (In Portuguese). Available at: http://ainfo.cnptia.embrapa.br/digital/bitstream/CNPUV/9754/1/cir076.pdf

Torres, T.C., A.B. G. Fernández, F.J.B. Cobo and J.R.R. Pérez. 2009. GIS for wine sector and differentiation of vintage lots in the D.O. Bierzo (León-España). Fifth International gvSIG Conference. (In Spanish) http://downloads.gvsig.org/download/events/gvSIG-Conference/5th-gvSIG-Conference/Articles/Article-SIG_seguimiento_viticola_Bierzo.pdf

Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing Environ. 8:127-150.

Usha, K. and B. Singh. 2013. Potential applications of remote sensing in horticulture- A review. Scientia Horticultuae. 153(4): 71-83

Vereecken H., J.A. Huisman, Y. Pachepsky, C. Montzka, J. Kruk, H. Bogena, J. Weihermüller, M. Herbst, G. Martinez and J. Vanderborght. 2014. On the spatio-temporal dynamics of soil moisture at the field scale. J. Hydrol. 516: 76–96.

Vereecken, H., L. Weihermuller, F. Jonard and C. Montzka. 2012. Characterization of crop canopies and water stress related phenomena using microwave remote sensing methods: a review. Vadose Zone J. 11:2.

Vrieling, A. 2006. Satellite remote sensing for water erosion assessment: a review. CATENA. 65(1): 2-18.


Refbacks



Copyright (c) 2017 Journal of Environmental and Agricultural Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Follow us at Facebook: https://www.facebook.com/journal.environmental.agricultural.sciences

GoogleScholar: https://goo.gl/qVGkkj